THE NE CHAPTER OF THE CHP ALLIANCE TWA HOTEL, JFK AIRPORT – CASE STUDY REVIEW SEPTEMBER 13, 2023

Today's discussion

- Northeast-Western Energy Systems
- **TWA Hotel Introduction**
 - **Design Challenges**
 - **The Hybrid CHP Solution**
 - Design and Execution
- **TWA Hotel Performance Review**
 - **Key Performance Indicators**
 - **Project SWAT Analysis**
- **Q** & A

NES-WES installed base of Jenbacher gas engines

ENERGY SYSTE

TWA HOTEL AT JFK AIRPORT

1956 Lockheed Constellation as restaurant and bar

Now ...

THE DESIGN CHALLENGE

Electric Load Requirements

Customer requirements

- Central utility plant
- No connection to the electric utility
- High reliability & resiliency
- Fit on the roof of North Tower
- Strick vibration requirement
- Reduce their energy costs!

THE SOLUTION

The Plant Design

Solution

- Hybrid CHP plant
- 3 x JMS 208 Gas Engines
 - 1005 kW Electrical Output
 - 1923 Mbtu/hr Thermal Output
- 560 kW / 1.0 MWh energy storage
- 750 kW diesel emergency generator
- Completely islanded
- Entire Central Utility Plant (CUP) on North Tower
- CUP = 9,000 SF footprint
- Natural gas only input

HYBRID CHP SOLUTION – LEVERAGING THE BEST OF BOTH TECHNOLOGIES

Jenbacher Gas Engines

✓ Three (3) Jenbacher J208 gas engines
✓ 1.0 MW CHP installation

NEC Energy Storage System

✓ 560 kW / 1,000 kWh Energy Storage System

✓ Lithium ion based system

DESIGN AND EXECUTION - THE SOLUTION TEAM

DESIGN AND EXECUTION - INSTALLATION

- ✓ All systems fabricated & installed offsite in module enclosures
- \checkmark Delivered in 11 shipping containers

DESIGN AND EXECUTION – START UP JANUARY 2019

PERFORMANCE REVIEW – KEY INDICATOR

- INNIO myPlant Average Data per engine over 4 years and 8 months of operation:
 - OPH: 29,100 OPH
 - Utilization: 69 %
 - Electrical Energy: 4,500 MWh
 - Engine starts: 850

			Search for assets and sites							
(m) (m) (m)	[]	TWA H 467 kw	lotel J 87,353 r	FK D () Ass	set	EN	gines 3	LOC END CUST	ATION: New York,	US L
	🕜 Dashboard	Engines	CO Troub	leshooting	~ (0)	Location				
	STATUS	SERIAL NUMBER Filter	DESIGN NUMBER	ENGINE ID	TYPE Filter	LOAD RATE	OPH	STARTS	COMPONENTS	OIL
	RUNNING	1332616	V416	TWA 1	208	69 %	29872 h	739	V	
	RUNNING	1332610	V416	TWA 3	208	69 %	28045 h	834	Ø	
	AVAILABLE	1332614	V416	TWA 2	208	0 %	29434 h	924	Ø	

PERFORMANCE REVIEW – SWOT ANALYSIS

Strengths	Weaknesses	Opportunities	Threats
65% or greater overall efficiency.	At peak demand, the system is not an N+1 design	Continue improving operations practices.	Maintenance requirements when all three engines need to be operated during summertime at hotel full occupancy.
Lower emissions vs. grid- powered electricity and boilers for hot water	The Microgrid control system is an early design version.	Control philosophy could be improved.	
The hotel can fully function even if grid power is down for weather events.	Battery integration was not ideal.	Upgrading battery system	Difficulty replacing battery cells from the out of business supplier

Thank You

AMIR ALI

AALI@NES-WES.COM

267-621-8900

"When you do business with us you get more than just equipment, you get a partner." – Al Clark, Founder & CEO