Ohio’s Carbon Dioxide Pollution could be Dramatically Reduced with Industrial Energy Efficiency and Combined Heat and Power

Ohio Savings

The industrial sector—including manufacturing, mining, construction and agriculture—consumes about one-third of electricity generated in Ohio, the state’s single largest energy use (Figure 1). This energy consumption coupled with growing demand creates significant savings and emission reduction opportunities.

By increasing industrial energy efficiency (IEE), including combined heat and power (CHP) and waste heat to power (WHP), Ohio can:

- Reduce annual carbon dioxide (CO$_2$) emissions by 10.3-million tons in 2030;
- Achieve about 36 percent of Ohio’s emission reductions called for under the U.S. Environmental Protection Agency’s (EPA) Clean Power Plan (CPP);
- Save 15.2-million megawatt-hours of electricity in 2030;
- Make industrial companies more competitive by cutting their energy bills; and
- Save businesses $12.5 billion in cumulative cost savings (2016-2030) from avoided electricity purchases.

An Alliance for Industrial Efficiency analysis (using the American Council for an Energy-Efficient Economy’s SUPR 2 calculator) estimates savings in a scenario where each state:

1. The industrial sector ramps up to an annual 1.5% energy savings target by 2030; and
2. The commercial and industrial sectors install a portion of the technical potential for new CHP and WHP.

Ohio ranks 2nd in the U.S. for potential CO$_2$ reductions from IEE and CHP/WHP. An annual reduction of 10.3 million short tons of annual CO$_2$ emissions is equivalent to emissions from approximately 3 coal-fired power plants or 984,496 homes’ energy use for 1 year.

Table 1. Savings in Ohio from IEE, CHP, and WHP

<table>
<thead>
<tr>
<th></th>
<th>Annual CO$_2$ savings (short tons)</th>
<th>Annual energy savings (MWh)</th>
<th>Cumulative utility bill savings through 2030 (million 2011$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEE</td>
<td>9,480,039</td>
<td>12,010,126</td>
<td>$10,255</td>
</tr>
<tr>
<td>CHP/WHP</td>
<td>797,000</td>
<td>3,183,000</td>
<td>$2,270</td>
</tr>
<tr>
<td>Total</td>
<td>10,277,039</td>
<td>15,193,126</td>
<td>$12,525</td>
</tr>
</tbody>
</table>

Figure 1. Share of total energy consumed by end-use sector in Ohio, (2014)

An Alliance for Industrial Efficiency analysis (using the American Council for an Energy-Efficient Economy’s SUPR 2 calculator) estimates savings in a scenario where each state:

1. The industrial sector ramps up to an annual 1.5% energy savings target by 2030; and
2. The commercial and industrial sectors install a portion of the technical potential for new CHP and WHP.

Clean Power Plan

The Clean Power Plan (CPP) establishes customized targets for states to reduce the carbon pollution produced from power plants that reflect each state’s energy mix. In February 2016, the Supreme Court stayed implementation of the CPP pending judicial review. Despite the stay, some states are choosing to continue to work to cut CO₂ emissions from power plants and explore pathways to compliance. Ohio is currently assessing planning.

The CPP requires Ohio to reduce its annual CO₂ emissions by about 28.6 million short tons by 2030. Our analysis shows that industrial energy efficiency and CHP/WHP would result in an annual reduction of 10,277,039 short tons of CO₂ by 2030 – or approximately 36 percent of needed reductions across the state (Figure 2). Thus, IEE and CHP/WHP can play a central role in helping Ohio achieve its compliance targets.²

Market Value of Savings

Under the CPP final rule, industrial hosts can generate revenue by selling credits (emission reduction credits or allowances). As Table 2 shows, the size of the allowance market is huge. Note that the table shows the market value of savings in a single year; investments would generate a value stream that lasts for many years.

Table 2. Estimated allowance market value if IEE and CHP/WHP savings are realized (2030)

<table>
<thead>
<tr>
<th>Price per unit of trading</th>
<th>Size of Allowance Market ($ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>$121.55</td>
</tr>
<tr>
<td>$20</td>
<td>$243.09</td>
</tr>
</tbody>
</table>

Note: We apply the price per trading unit to combined annual energy savings in 2030. 1 MWh = 0.8 short tons of CO₂.

² There is a wide range of IEE activities available to manufacturers. For examples, visit the Alliance for Industrial Efficiency’s industrial energy-efficiency program case study series at http://alliance4industrialefficiency.org/resources/casestudies/.